Furious and paralytic rabies of canine origin: Neuroimaging with virological and cytokine studies

Jiraporn Laothamatas,¹ Supaporn Wacharapluesadee,² Boonlert Lumlertdacha,⁴ Sumate Ampawong,⁴ Vera Tepsumethanon,⁴ Shanop Shuangshoti,³ Patta Phumesin,² Sawwanee Asavaphatiboon,¹ Ladawan Worapruekjaru,¹ Yingyos Avihingsanon,² Nipan Israsena,² Monique Lafon,⁵ Henry Wilde,² and Thiravat Hemachudha²

¹Department of Radiology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; Departments of ²Medicine and ³Pathology, Chulalongkorn University Hospital, Bangkok, Thailand; ⁴Queen Saovabha Memorial Institute, Thai Red Cross Society, Bangkok, Thailand; ⁵Institute Pasteur, Paris, France

> Furious and paralytic rabies differ in clinical manifestations and survival periods. The authors studied magnetic resonance imaging (MRI) and cytokine and virus distribution in rabies-infected dogs of both clinical types. MRI examination of the brain and upper spinal cord was performed in two furious and two paralytic dogs during the early clinical stage. Rabies viral nucleoprotein RNA and 18 cytokine mRNAs at 12 different brain regions were studied. Rabies viral RNA was examined in four furious and four paralytic dogs during the early stage, and in one each during the late stage. Cytokine mRNAs were examined in two furious and two paralytic dogs during the early stage and in one each during the late stage. Larger quantities of rabies viral RNA were found in the brains of furious than in paralytic dogs. Interleukin-1 β and interferon- γ mRNAs were found exclusively in the brains of paralytic dogs during the early stage. Abnormal hypersignal T2 changes were found at hippocampus, hypothalamus, brainstem, and spinal cord of paralytic dogs. More widespread changes of less intensity were seen in furious dog brains. During the late stage of infection, brains from furious and paralytic rabid dogs were similarly infected and there were less detectable cytokine mRNAs. These results suggest that the early stage of furious dog rabies is characterized by a moderate inflammation (as indicated by MRI lesions and brain cytokine detection) and a severe virus neuroinvasiveness. Paralytic rabies is characterized by delayed viral neuroinvasion and a more intense inflammation than furious rabies. Dogs may be a good model for study of the host inflammatory responses that may modulate rabies virus neuroinvasiveness. Journal of NeuroVirology (2008) 14, 119-129.

Keywords: rabies; pathogenesis; magnetic resonance imaging; cytokines

Address correspondence to Thiravat Hemachudha, MD, Molecular Biology Laboratory for Neurological Diseases, Department of Medicine (Neurology), Faculty of Medicine, Chulalongkorn University Hospital, Rama 4 Road, Bangkok 10330, Thailand. E-mail: th-cu@usa.net; fmedthm@gmail.com

This work has been supported in part by grants from the National Science and Technology Development Agency, Thailand, and Advanced Diagnostic Imaging and Image-Guided Minimal Invasive Therapy Center (AIMC), Ramathibodi Hospital.

Authors' contributions: IL performed the MRI examination, designed the cradle for dogs for MRI examination and MR protocol for the dog study, and analyzed and interpreted data and was involved in drafting the manuscript. SW developed the protocol for rabies virus and cytokine RNA quantification and analyzed the RNA data and was involved in drafting the manuscript. BL examined the rabid dogs, collected specimens for laboratory confirmation, and developed the cradle for dogs for MR examination. He also cared for dogs during the quarantine period and during the neuroimaging examination. SAm, VT, and SS also took care of the dogs during the quarantine period and during the neuroimaging examination. SPP did the laboratory work in diagnosing rabies and in quantification of rabies virus and cytokine RNA. SAs and LW participated in the designing of the MR protocol and MR examination and analyzing the data. YA such as and NI were involved in developing cytokine quantification protocol analysis of the data and in drafting manuscript. ML suggested design, analyzed and interpreted the data, and critically reviewed the manuscript. HW analyzed the data and reviewed the manuscript. All authors read and approved the final manuscript.

Received 6 August 2007; revised 4 October 2007; accepted 27 November 2007.

Background

Rabies is caused by a neurotropic RNA virus of genotype 1 in the family *Rhabdoviridae*, genus *Lyssavirus*. Most human deaths are attributable to bites inflicted by rabies infected dogs and wounds contaminated with rabies virus-containing saliva. Once the rabies virus gains access to nerve endings, it travels to the central nervous system (CNS) via retrograde axoplasmic transport and disseminates rapidly throughout the CNS. Two distinct clinical forms, furious and paralytic, are recognized in humans and dogs (Hemachudha, 1994; Hemachudha *et al*, 2002).

In Thailand, we have experience only with the dog strain and no case associated with bat exposure has been recognized (Lumlertdacha *et al*, 2005). Viruses identified in other species, such as cats and wildlife, originate from the dog variant (Denduangboripant *et al*, 2005; Lumlertdacha *et al*, 2006). Only few nucleotide differences in rabies genes were observed between viruses associated with furious and paralytic dogs and humans (Hemachudha *et al*, 2003b; Khawplod *et al*, 2006). The observation that a single Thai dog transmitted furious rabies to one patient and paralytic rabies to another does not support the role of strain differences in determining clinical diversities (Hemachudha *et al*, 2002).

Furious patients tend to die faster (average 5.7 days compared to 11 days in paralytic rabies). Several recent clinical, electrophysiological, and neuropathological findings suggested possible mechanisms for the two clinical forms. Dysfunction of peripheral nerves, not the anterior horn cells, is responsible for clinical weakness in paralytic rabies (Hemachudha et al, 2005; Mitrabhakdi et al, 2005; Sheikh et al, 2005). Despite evidence of anterior horn cell dysfunction in furious rabies, this is not associated with demonstrable weakness (Mitrabhakdi et al. 2005). Clinical symptoms of furious rabies are indicative of limbic dysfunctions. These are missing or not prominent in paralytic rabies. Magnetic resonance imaging (MRI), performed during early and late stages of the disease in humans, did not show differences between the two clinical forms (Laothamatas et al, 2003; Pleasure and Fischbein, 2000).

The origin of paralytic rabies remains enigmatic. It has been proposed that paralytic rabies could result from lower viral loads in the brain related to longer survival periods and lack of brain symptoms. However, a comparable degree of rabies virus antigen was confined to brainstem, thalami, and basal ganglia in furious as well as in paralytic rabies patients who survived 7 days or less (Tirawatnpong *et al*, 1989). There has been speculation regarding differences in immune responses in human furious and paralytic rabies. However, only peripheral markers, such as measures of cytokines in blood or cerebrospinal fluid (CSF) or immune capacities of circulating cells were assayed in humans. Immune-accelerated death has been hypothesized in furious rabies to explain the rapid fatal course. Six of nine patients who had cellular immunity to rabies virus, determined by lymphocyte proliferation test, manifested as furious rabies, whereas none of seven who had such a response presented as paralytic rabies (Hemachudha *et al*, 1988). Only 1 of 6 paralytic rabies patients (versus 12 of 22 furious) had elevated soluble interleukin (IL)-2 receptor. IL-6 was elevated in 5 of 22 furious and in 0 of 6 paralytic rabies patients (Hemachudha *et al*, 1993).

To assess whether there were differences in the amount of rabies virus and inflammatory/cytokine responses in the brains of furious and paralytic rabiesinfected dogs, we studied rabies viral nucleoprotein (N) RNA at 12 different brain regions in four furious and four paralytic dogs during the early stage, and in one each during the late stage. All of these brain regions of two furious and two paralytic dogs during the early stage, and one each during late stage were also determined for the expression of 18 cytokine mRNAs. MRI of the brains of two furious and two paralytic rabies-infected dogs during their early clinical course was also performed. This was to determine whether such abnormalities were in accord with a specific locus for furious symptoms and whether there was a correlation between MRI abnormalities and virus load or inflammatory/cytokine responses.

Results

Determination of rabies viral RNA at different brain regions

Rabies viral RNA was detected by real-time polymerase chain reaction (PCR) in 12 different regions of the brains of 10 dogs. Four were furious and four paralytic and showed early signs of disease. One was late paralytic and one late furious. Although the number of subjects was limited and may not be appropriate for accurate statistical analysis, larger quantities of rabies viral RNA could be detected in all parts of the brains of furious dogs than in the brains of paralytic dogs. In paralytic dogs, rabies viral RNA was confined mainly to basal ganglia, caudate nucleus, and thalamus and barely detectable in several parts of the brains (Table 1). Basal ganglia, caudate nucleus, thalamus, as well as midbrain were also more heavily infected regions in furious rabid dogs. This suggests that infection was delayed in paralytic as compared to furious dogs. During the late stage, when the animals were obtunded, all brain regions of both furious and paralytic dogs had large amounts of rabies viral RNA.

Determination of cytokine mRNA at different brain regions

Cytokine mRNAs were detected by reverse transcriptase–PCR (RT-PCR) in several brain regions of early (two furious and two paralytic dogs)

	E	arly	Late						
Brain region	Furious* $(n = 4)$	Paralytic* $(n = 4)$	Furious $(n = 1)$	Paralytic $(n = 1)$					
Frontal	6.73 ± 2.68	0.48 ± 0.33	5.20	ND**					
Temporal	6.69 ± 1.89	1.48 ± 0.92	5.00	7.30					
Hippocampus	6.15 ± 2.03	0.95 ± 0.55	7.90	6.00					
Parietal	6.40 ± 1.85	0.88 ± 0.69	4.00	4.60					
Occipital	7.15 ± 3.73	0.13 ± 0.07	5.60	3.90					
Midbrain	10.92 ± 3.36	1.87 ± 1.07	16.10	6.60					
Pons	3.96 ± 1.14	1.51 ± 0.90	5.30	3.60					
Medulla	7.07 ± 2.55	1.64 ± 0.98	15.30	2.90					
Cerebellum	3.14 ± 1.09	0.43 ± 0.24	4.20	6.30					
Thalamus	11.02 ± 2.78	2.66 ± 1.53	4.80	8.60					
Basal ganglia	8.52 ± 2.04	5.74 ± 3.43	7.80	12.90					
Caudate nucleus	10.59 ± 3.95	4.56 ± 2.63	9.70	13.90					

Table 1Distribution of rabies viral RNA in CNS of rabid dogs

Note. Viral RNA distribution is given as [(copies/ μ g total RNA) × 10⁸].

*Expressed as mean \pm standard error of the mean.

**Sample not available.

and late (one furious and one paralytic) stage rabid dogs (Table 2). However, cytokines that were detected and considered as significant were fewer and mainly present during the early stage and particularly in paralytic dogs. This may suggest that mRNA expression of cytokines in the rabid brain is a transient event. IL-2 mRNA could not be detected in any brain sample. This has been previously observed in other animal (mouse) models (Baloul et al, 2004; Galelli et al, 2000). Monocyte chemoattractant protein (MCP)-1 was the only cytokine which was found to have an increased ratio to glyceraldehyde 3-phosphate dehydrogenase (GAPDH) area in a normal control dog brain (data not shown). Other cytokines, in this normal control brain, were either non-detectable or their ratio to GAPDH area was <1.

All cytokine mRNAs, except that of IL-2, were detectable in one or both early paralytic dog brains (Table 2). These included, interferon (IFN)- γ (2/2), IL-1 β (2/2), fibroblast growth factor (FGF) (1/2), granulocyte-macrophage colony-stimulating factor (GM-CSF) (1/2), IL-4 (1/2), IL-5 (1/2), IL-6 (1/2), IL-8 (1/2), IL-10 (1/2), IL-12 (1/2), IL-18 (2/2), toll-like receptor (TLR)-4 (2/2), tumor necrosis factor (TNF)- α (1/2), and transforming growth factor (TGF)- β (2/2).

Notable differences during the early stage were that IFN- γ and IL-1 β were present exclusively in paralytic dogs (Table 2). These, as well as GM-CSF, IL-2, -4, -8, -10 were nondetectable in all brain regions of two furious dogs. IL-5 was detectable in only one brain region of one furious dog.

Although the cytokines studied were limited and might not be comparable with DNA microarray, they belong to the innate and adaptive immune responses. Despite limitation in sample size, results suggest that brain cytokine transcription inversely correlates with brain virus infection and that IFN- γ and IL-1 β mR-NAs expression in the brain could be a hallmark of paralytic rabies.

MRI examination

Because MRI analysis can reliably detect brain regions affected by inflammation such as in Japanese encephalitis (Kalita et al, 2003), we analyzed whether there were any differences on MRI between paralytic and furious dogs during the early stage of the disease. Two distinct patterns were found (Figures 1 and 2). In both paralytic dogs, abnormal hypersignal T2 changes of mild to moderate degree were noted at the inferomedial temporal lobes and hippocampi (Figure 1; results of only one dog were shown since both had similar patterns). Moderate to marked degree of changes were noted at the hypothalami, midbrain, pons, medulla, and upper spinal cord. In contrast, only diffuse hypersignal T2 changes involving supratentorial structures, such as cerebrum and cerebellum were demonstrated in two furious dogs (Figure 2; results of one dog were shown since both had similar patterns). Lesions at the temporal lobes, brain stem, and spinal cord were also demonstrated. The signal intensity of MRI abnormalities at all brain regions of furious dogs was not as prominent as that in paralytic cases. No gadolinium-contrast lesions were noted in both forms. We have not performed MRI examination of the whole spinal cord due to technical limitations. We used our own modified coiling system and could include only the upper cervical cord in this study. Lacking such MRI data in the spinal cord precludes us from correlating data derived from MRI, virus, and cytokine studies.

These data indicated that dogs with paralytic rabies, in which cytokine mRNAs were mostly transcribed in the brain, were also the dogs showing the clearest MRI abnormalities.

Discussion

In this comparative analysis of furious and paralytic rabies in dogs, we demonstrated that the brain was

VEGF 206		174	174	195	197	197	201	201	201	144	174	174	165	001	174	174	195	197	197	201	201	201	144	174	174	165		0	0	0	0	0	0	0 0			0	0		170	180	185	175	174	130	132	150	130	176	001
VEGF 188		0	0	0	0	0	0	0	0			, o		>	0	0	C	- 0		0	0	0 0		0 0	0		, ,	0	0	0	0	0	0	0 0			0	0		156	152	135	157	147	125	118	141	119	142	
VEGF164		190	211	223	223	240	233	227	233	207	207	211	240	CH I	190	211	223	2.2.3	240	233	7.0.0	233	207	207	211	249	1	71	70	82	145	202	240	255	00 19	02	231	255		233	237	233	227	234	229	225	223	226	223	
TGF-b		140	149	95	95	175	163	143	147	46	5 0	92	ļ		0	0	133	c	133	131	c			151	134	c	,	0	0	66	66	112	160	200			153	110		140	139	150	184	187	164	177	163	58	66	
TNF-a		0	0	143	143	143	143	143	143	143	123	0		•	0	0	C	c	115	0	c			66	3 0		,	0	0	0	0	0	0	0 0			0	0		225	225	221	224	208	179	217	215	182	206	
TLR-4		0	0	0	101	190	190	130	c			, o		>	109	117	127	134	130	119	c			134	123	112		102	106	73	0	0	123	106	6	0 84	0	64		86	79	84	0	85	78	0	71	0	66	
MCP-1		157	118	217	211	255	227	217	206	148	дg	165	108	001	127	110	215	2.07	165	127	152	141	197	225	2.14	153		122	255	104	116	0	207	134	14/	105	131	86		245	229	229	234	233	219	238	235	224	226	
IL-18		0	0	0	78	164	126	75	C			, o		>	180	110	155	c	167	187	144	175	113	201	119	0	>	62	0	0	78	0	123	240	700		64	73		193	192	238	236	226	233	222	224	215	215	
IL-12 p40		0	0	0	0	0	0	0	C			, o		>	0	0	C	0		0	C						,	0	0	0	0	0	0				0	0		182	178	175	139	152	233	224	214	116	139	
L-12 p35		88	167	217	108	140	112	138	105	97	80	108	BG	00	127	179	170	c	149	0	0	0 0	0 0	0 0	145	145		0	0	0	0	0	0	0 0			0 0	0		210	180	226	208	209	188	111	191	164	203	201
IL-10 I		0	0	0	0	0	0	0	C) C			0	0	C	0	0 0	0	C	0 0		0 0			, ,	0	0	0	0	0	0				0	0		192	131	180	176	157	244	253	223	225	244	× × 1
IL-8		0	0	0	0	0	0	0	C	0 0		, 0		5	0	0	C	0	0	0	C	0	0 0	0	0	. 0	,	0	0	0	0	0	0				0	0		242	222	233	232	241	237	213	207	188	140	CTT
IL-6		0	0	0	0	0	0	0	0			, o		>	0	0	108	105	66	66	c			101	116	165		0	0	0	0	0	0				0	0		251	237	252	244	226	239	231	231	236	226	011
IL-5		0	0	0	0	0	0	0	C			, o		•	0	0	C	111	c	0	C						,	0	0	0	0	0	0	0 0			0	0		1.99	203	167	191	209	132	128	125	122	191	101
IL-4		0	0	0	0	0	0	0	C			, 0		•	0	0	C	0	0 0	0	C						,	0	0	0	0	0	0				0	0		171	87	191	173	101	196	194	170	173	203	202
IL-2		0	0	0	0	0	0	0	C			, 0			0	0	C	0	0 0	0	C						,	0	0	0	0	0	0				0	0		0	0	0	0	0	0	0	0	0	0	>
IL-1B		0	0	0	0	0	0	0	C			, o		>	0	0	C	- 0		0	C						, ,	134	151	134	0	0	0	143	130	115	124	135		255	212	220	218	1.95	107	117	120	152	181	101
IFN-g		0	0	0	0	0	0	0	C			, o		•	0	0	0		0 0	0	C						,	105	110	152	0	0	132	127	12/	#0T	110	0		233	124	243	94	218	244	199	142	123	219	
GM-CSF		0	0	0	0	0	0	0	C			, o		b	0	0	C	- 0		0	C						, ,	0	0	0	0	0	0				0	0		189	164	218	206	151	225	227	215	204	230	201
FGF		0	100	79	100	110	86	0	72			,62 62	8 0		103	101	126	107	115	127	c	0 0		116	118	0	,	0	0	0	0	0	0				0	0		214	212	203	215	216	207	190	222	209	207	2
Cox-2		223	77	78	0	62	59	51	48	59	2	, o		>	0	0	C	0		0	C	221	-				,	110	111	118	66	97	128	95	00 00	7.9	72	115		234	213	217	225	230	168	140	188	204	201	
GAPDH		131	255	255	255	255	255	149	184	255	255	255	77		141	149	178	196	191	130	135	146	119	170	151	120		157	137	184	255	255	153	147	100	85 BF	20	56		167	176	197	218	220	235	240	240	244	235	
	s No. 10			pus						5	1	lia		s No. 8			DUS						F	1	lia		ic No. 7			bus						=	lia		ic No. 32			snd						n		
Brain region	Early Furiou	Frontal	Temporal	Hippocam	Parietal	Occipital	Midbrain	Pons	Medulla	Cerehellun	Thalamus	Basal gang	Candate	Early Furiou.	Frontal	Temporal	Hinnocam	Parietal	Occipital	Midbrain	Pons	Medulla	Cerehellun	Thalamus	Basal vano	Caudate	Early Paralyt	Frontal	Temporal	Hippocam	Parietal	Occipital	Midbrain	Pons	Combolling	Thelemus	Basal gang	Caudate	Early Paralyt	Frontal	Temporal	Hippocam	Parietal	Occipital	Midbrain	Pons	Medulla	Cerebellur	Thalamus	

 Table 2
 Semiquantitative analysis of cytokine expression from 12 regions of fresh dog brain tissue*

111	113	119	116	120	115	110	108	107	109	117	109		QN	127	128	122	142	165	142	115	170	150	192	187	shaded
0	0	0	0	0	0	0	0	0	0	0	0		QN	0	0	0	0	0	0	0	0	0	0	0	abers in
132	124	135	128	145	125	117	122	111	106	140	127		Ð	232	223	210	255	255	229	178	241	255	255	255	and nun
0	164	164	163	170	0	0	162	157	0	137	140		Ð	0	0	0	0	0	0	0	0	0	0	0	te. Zero
0	0	0	0	0	0	0	0	0	0	0	0		Ð	0	0	0	0	0	0	0	0	0	0	0	= not dor
0	122	128	140	121	132	128	120	128	120	114	129		QN	0	0	0	126	219	241	140	86	0	0	163	ole. ND =
80	145	98	82	125	88	87	151	76	76	87	75		Ð	144	74	97	124	255	207	100	55	0	0	87	me samt
0	106	62	0	0	0	0	0	0	0	0	0		Ð	0	0	0	110	128	130	66	86	0	0	0	om the sa
0	0	0	0	0	0	0	0	0	0	0	0		QN	0	0	0	0	0	0	0	0	0	0	0	I area fro
0	158	165	154	154	167	0	0	166	0	156	169		QN	06	86	60	56	0	60	0	06	0	0	0	O GAPDF
0	0	0	0	0	0	0	0	0	0	0	0		QN	0	0	0	0	0	0	0	0	0	0	0	rtokine to
0	0	0	0	0	0	0	0	0	0	0	0		QN	0	0	0	0	0	0	0	0	0	0	0	atio of cv
0	0	0	0	0	0	0	0	0	0	0	0		QN	116	166	158	128	108	121	163	80	0	80	110	ted as a r
0	0	0	0	0	0	0	0	0	0	0	0		Ð	0	0	0	0	0	0	0	0	0	0	0	e calcula
0	0	0	0	0	0	0	0	0	0	0	0		QN	0	0	0	0	0	0	0	0	0	0	0	ates wer
0	0	0	0	0	0	0	0	0	0	0	0		QN	0	0	0	0	0	0	0	0	0	0	0	ression r
0	0	0	0	0	0	0	0	0	0	0	0		QN	0	100	100	120	100	100	92	0	98	78	0	l the exp
0	0	0	0	0	0	0	0	0	0	0	0		ΩN	97	100	118	102	133	126	221	100	0	80	87	ware and
0	0	0	0	0	0	0	0	0	0	0	0		QN	0	0	0	0	0	0	0	0	0	0	0	vsis soft
0	0	0	0	0	0	0	0	0	0	0	0		QN	210	191	0	93	116	137	118	114	0	0	0	nage anal
0	0	0	0	0	0	0	0	0	0	0	0		QN	165	0	0	0	0	143	134	0	0	0	0	video in
139	180	141	100	211	245	200	233	185	100	200	200		QN	255	255	119	178	200	255	255	223	117	113	120	tified by
Frontal	Temporal	Hippocampus	Parietal	Occipital	Midbrain	Pons	Medulla	Cerebellum	Thalamus	Basal ganglia	Caudate	Late Paralytic No. 23	Frontal	Temporal	Hippocampus	Parietal	Occipital	Midbrain	Pons	Medulla	Cerebellum	Thalamus	Basal ganglia	Caudate	The gels were quan

ers in sha		
o and num		
done. Zer		
. ND = not		
ne sample		
rom the sai		
PDH area f	stable.	
cine to GAJ	dered dete	
tio of cytol	lues consid	
ited as a ra	present va	
ere calcula	umbers re	
ion rates w	Jnshaded r	
ie expressi	gnificant. L	
vare and th	sidered sig	
alysis softv	values con	
o image an	kines and ¹	
ed by video	table cytol:	
∙e quantifi€	t nondetec	
he gels wer	a represen	
Ē	I.C	

Figure 1 Sagittal (A, B) and coronal (C to F) T2-weighted FLAIR MR images of a paralytic rabid dog brain reveal moderate to marked abnormal hypersignal T2 changes at the hypothalamus (*black arrow* in A and C), midbrain (*white arrow* in A and E), pons (black asterix in A and F), medulla and upper spinal cord (*double arrows* in B). Less intense hypersignal T2 changes are also observed at the anteroinferomedial temporal lobes (*black V* in C and D). No significant abnormality of the cerebrum is observed.

rapidly colonized by the virus in furious rabies. Yet, only mild MRI changes and weak cytokine transcription could be detected. This was in striking contrast to brains of paralytic rabid dogs, which showed stronger disturbances in MRI signals and in inflammatory cytokine responses with slower neuroinvasiveness. These distinctions could not be observed in the later stage of the disease.

Neuroimaging, virus and cytokine studies in rabid dogs J Laothamatas *et al*

Figure 2 Sagittal and coronal T2-weighted FLAIR MR images of a furious rabid dog brain reveal more diffuse mild to moderate hypersignal T2 changes involving hypothalamus, thalamus, midbrain, pons, medulla and spinal cord (*white arrows* in A to C and *white circles* in D toF), and hippocampi. Changes also involve the cerebrum (white asterix in C to F) and infratentorial cerebellum (black asterix in A).

The numbers of dogs studied were limited because naturally infected dogs were chosen. This would simulate what we encounter in humans. There are major barriers to using dogs in experiments in Buddhist countries such as Thailand. An experimental design having dogs inoculated with different virus dosages might give more control over when and how they were infected. Nevertheless, we have previously shown that sites of a bite did not influence the clinical expression of furious or paralytic rabies (Tirawatnpong *et al*, 1989). We chose to define stage of disease as clinical stage (early or late) rather than the interval between time of exposure and examination because this actually reflects the functional status of the nervous system of the infected individual (Hemachudha, 1989). The virus may remain latent at the exposure site and the incubation period can be variable (Hemachudha and Phuapradit, 1997; Hemachudha *et al*, 2006). We studied only a small number of late-stage dogs, though they were easier to find, because we focused mainly on what actually happened during the early stage.

Our present data suggest that timing of MRI examination is critical. This might explain why both furious and paralytic rabies patients in our previous study had similar MRI patterns (Laothamatas *et al*, 2003). Localization of MRI abnormalities in rabid dogs did not correlate with loci that might be related to furious symptoms.

IFN- γ as well as IL-1 β were present only in the brains of paralytic dogs. This suggests that the capacity to respond to rabies infection in paralytic dogs may be greater compared to their furious counterparts. IFN- γ has been shown to be produced by migratory T cells invading the brains of mice infected with attenuated Pasteur strain rabies virus (Galelli et al, 2000). These mice recovered with or without paralytic sequele. Increased production in IL-1 α and diminished binding sites have been shown in rabiesinfected mouse brain, particularly in the hippocampus (Marquette et al, 1996a). Proinflammatory cytokines, such as IL-1 β , in rabies-infected rat brains could be produced by resident microglia and infiltrating macrophages (Marquette *et al*, 1996b). Therefore, it is possible that there might be cells that have crossed the blood-brain barrier (BBB) at certain stages in paralytic rabies, which may be associated with some degree of leakage (Roy et al, 2007). In an animal model, virus pathogenicity also inversely correlates with the number of T cells migrating into the rabiesinfected brains (Baloul *et al*, 2004; Roy *et al*, 2007; Wang *et al*, 2005).

We failed to demonstrate evidence of BBB leakage by MRI during the early stage of human rabies patients (Laothamatas et al, 2003) and rabies-infected dogs (in this study). No gadolinium-enhanced lesions were evident. Rabies-neutralizing antibody could not be detected in the CSF of a furious rabies patient who had received very high doses of intravenous human rabies immune globulin (Hemachudha et al, 2003a). Furthermore, cellular infiltrates were scant in the cerebral hemispheres of our rabies-infected dogs (data not shown) and in human rabies patients of both forms (Hemachudha *et al*, 2006; Juntrakul *et al*, 2005; Tirawatnpong et al, 1989). The degree of cellular infiltration in the brainstem of rabies-infected dogs and humans was variable and did not correlate with clinical manifestations. Marked cellular infiltration was found only in the peripheral nerves of paralytic rabies patients (Hemachudha et al, 2005;

Mitrabhakdi *et al*, 2005). Lack of cellular infiltration in the cerebral hemisphere of rabies-infected humans and dogs may be explained by destruction of T cells that invade the CNS via increasing immunosubversive molecules, such as FasL (Baloul and Lafon, 2003; Lafon, 2004). We are intrigued by our findings that paralytic rabies-infected dogs have higher cytokine expression in the brains than furious dogs.

Our data suggest that a stronger CNS and perhaps earlier inflammatory response resulting in a delayed spread of infection may explain the longer survival in paralytic rabies. Moreover, this does not support the role of immune accelerated death in explaining the rapid fatal course in furious rabies. The dog may be a promising model to further study the relationship between virus and inflammatory responses in the brain.

Materials and methods

Animals

A total of 13 dogs were used. Three were normal controls and 10 were proven rabies infected. All, except one control that was injured by a car and included in the virus and cytokine studies, were community dogs abandoned after they were bitten by suspected rabid dogs. None had been previously vaccinated. Each was observed for rabies symptoms at the quarantine and diagnostic unit of the Queen Saovabha Memorial Institute (QSMI). Sites of bites were mainly the head and face. After symptoms suggestive of rabies developed, the diagnosis was confirmed by demonstration of rabies viral RNA in saliva by nucleic acid sequence–based amplification (NASBA) (Wacharapluesadee and Hemachudha, 2001). Results were known within 3 to 4 h.

Categorization of furious or paralytic rabies was based on the following: aggression and biting behavior in dogs was associated with the former, and hind limb paresis with none or only a mild degree of aggression in dogs with the latter type (Tepsumethanon *et al*, 2005). The term "stage of infection" was clinically defined as early or late, based on whether the dogs remained fully conscious (early) or lapsed into coma (late) as previously described (Tirawatnpong *et al*, 1989). After the diagnosis was confirmed, these dogs were transferred for MRI at the Neuroimaging Center, Ramathibodi Hospital. All were in the early stage and remained conscious. Examination was done within 48 h, usually 24 h, after onset of the first clinical symptoms.

Two paralytic, two furious, and two uninfected dogs were included in the MRI study. During transfer and examination, the dogs were sedated with ketamine and pentobarbitone sodium. All rabiesinfected dogs were humanely sacrificed at the completion of examination. Eight (four furious and four paralytic) rabies-infected dogs during the early stage were included in the viral load study. Four (two furious and two paralytic) of them were also included in the cytokine study. Additionally, we studied one furious and one paralytic dog in the late stage for viral load and cytokines. The control dog, injured by a car, was also included.

The studies were approved by the research and ethics committee of Ramathibodi Hospital.

MRI examination

Studies were performed with a 3-tesla superconductive magnet (Intera; Philips Medical System, Best, The Netherlands). MR imaging of the brain and upper spinal cord was performed with SENSE Flex-M coils (Philips Medical System) in axial and coronal diffusion-weighted image (DWI; TR/TE/ EPI/FOV: 2568/88/47/160; b-value of 0 and 1000 s/mm²), sagittal and coronal T2-weighted fluid-attenuated inversion recovery (FLAIR) (TR/TE/TI/ET/matrix: 11,000/120/280/30/256 × 180), and T1-weighted (TR/TE/matrix: 500/11/256 × 200) before and after gadolinium administration, 0.1 mmol/kg, (Magnevist, Schering, Germany).

Collection of samples for viral load and cytokine studies

Brain specimens were collected from 12 anatomical locations at brainstem (midbrain, pons and medulla), thalamus, basal ganglia (putamen and globus palludus), caudate nucleus, temporal cortex, hippocampus (including CA1–4 regions), cortices of frontal, parietal and occipital regions, and cerebellum (mainly at the vermis). The diagnosis of rabies was confirmed by the presence of rabies antigen and viral N RNA in the brain by direct fluorescent antibody test and NASBA. All brains were kept under -80° C until examination.

Extraction of RNA and reverse transcription

Total RNA was extracted using the RNeasy Lipid Tissue Mini Kit (Qiagen, Hilden, Germany). Brain tissue was homogenized in 1 ml of QIAzol Lysis Reagent (Qiagen). The sample was vortexed and 200 μ l of chloroform was added. The sample was incubated at room temperature for 10 min then centrifuged at $12,000 \times g$ for 15 min at 4°C. RNA contained in the aqueous phase was transferred to a new tube and processed according to instructions from the manufacturer (Qiagen). The residual DNA was removed by the column DNase-digestion method using the RNase-Free DNaseSet (Qiagen). Total RNA was quantified using a SmartSpec 3000 Spectrometer (BioRad, Hercules, USA). First-strand cDNA synthesis was carried out with 1 μ g of total RNA using the supplied random primer in 20 µl total volume under the following conditions: 70°C for 5 min for random primer annealing, 5 min on ice, annealing at 25°C for 5 min, first-strand synthesis at 42°C for 60 min, and inactivation at 70°C for 15 min (Improm-II reverse transcription system; Promega, Madison, WI, USA). cDNA concentrations

were adjusted with RNase and DNase free water to 25 and 2.5 ng/ μ l for cytokine and viral quantitation assays, respectively.

Rabies virus quantification by TaqMan real-time PCR

Rabies viral load was measured by a realtime polymerase chain reaction (PCR) assay. The primer set for the rabies N gene was 5'-CTGGCAGACGACGGAACC-3'and 5'-CATGATTCG-AGTATAGACAGCC-3'. The Taqman fluorescent probe was 5'-FAM-TCAATTCTGATGACGAGGAT TACTTCTCCGG-TAMRA-3'. Five nanograms of sample cDNA were added to a 20- μ l reaction volume of PCR mixture containing 1× Taqman PCR master mix (QuantiTect Probe PCR, Qiagen), 500 nM of each primer, and 200 nM probe. Thermal cycler conditions were 15 min at 95°C, and 45 cycles of 5 s at 95°C, followed by 1 min at 60°C. Dilutions of cDNA of single antisense-stranded rabies RNA obtained from T7 *in vitro* transcription (Riboprobe *in vitro* transcription systems; Promega) were used to prepare a standard curve. All standards and samples were assayed in the Light Cycler instrument (Roche Molecular Systems, Indianapolis, IN). The rabies viral load was calculated by the following formula: copy number of rabies per μg total RNA = (copy number per μ l)/(total RNA concentration per μ l). Each reaction included a negative control (water). The positive control included known amounts of synthetic rabies RNA.

Semiquantification of cytokine mRNA

PCR was performed on the reversely transcribed (RT) cDNA product to determine the expression of mRNA encoding cyclooxygenase (COX)-2, FGF, GM-CSF, IFN- $\gamma,$ IL-1 $\beta,$ IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12 p35, IL-12 p40, IL-18, MCP-1, TLR-4, TNF- α , TGF- β , and vascular endothelial growth factor (VEGF)-164, -188, and -206 (Canine Primer Sets; Endogen, Pierce, Rockford, IL) according to the manufacturer's instructions. Normalization of the samples was accomplished using RT-PCR of the housekeeping gene GAPDH (Chamizo *et al*, 2005) to control the efficacy of the RNA extraction, its integrity, and the amount of RNA present. Controls were incorporated in each set of PCR reactions. Positive control included the synthetic DNA with different product size supplied by the manufacturer. Negative control included "no RNA" (water). Conditions for the PCR were as follows: after initial denaturation at 95°C for 2 min, 35 amplification cycles were conducted in a DNA thermocycler (model 9600, Perkin Elmer). Each cycle consisted of denaturation at 95°C for 30 s, annealing at 55°C for 30 s, and extension at 72°C for 1 min. PCR components included PCR buffer (1×; Promega), MgCl₂ (2.0 mM; Promega), dNTP mix (0.2 mM; Invitrogen), Taq DNA polymerase (2.5 U; Promega), 2 μ l of the Primer Set solution (Pierce), and 2 μ l of sample cDNA (25 μ g/ μ l)

or 1 μ l of the positive control in a 50- μ l reaction volume.

Ten microliters of the amplified product were analyzed by agarose gel electrophoresis (2% agarose, containing 0.3 μ g/ μ l ethidium bromide) and subsequently visualized and documented on a Gel Doc 2000 system (BioRad, Hercules, USA). The cytokines and GAPDH RT-PCR products of each RNA sample from 12 brain regions of the same dog were run in parallel. In order to quantify the intensity of the ethidium bromide signals, the gel was scanned

References

- Baloul L, Camelo S, Lafon M (2004). Up-regulation of Fas ligand (FasL) in the central nervous system: a mechanism of immune evasion by rabies virus. *J NeuroVirol* **10**: 372–382.
- Baloul L, Lafon M (2003). Apoptosis and rabies virus neuroinvasion. *Biochimie* **85**: 777–88.
- Chamizo C, Moreno J, Alvar J (2005). Semi-quantitative analysis of cytokine expression in asymptomatic canine leishmaniasis. *Vet Immunol Immunopathol* **103**: 67– 75.
- Denduangboripant J, Wacharapluesadee S, Lumlertdacha B, Ruankaew N, Hoonsuwan W, Puanghat A, Hemachudha T (2005). Transmission dynamics of rabies virus in Thailand: implications for disease control. BMC Infect Dis 5: 52.
- Galelli A, Baloul L, Lafon M (2000). Abortive rabies virus central nervous infection is controlled by T lymphocyte local recruitment and induction of apoptosis. *J NeuroVirol* **6:** 359–372.
- Hemachudha T (1989). Rabies. In: *Handbook of clinical neurology viral disease*. Vinken P, Bruyn G, Klawans H (eds). Elsevier Science Publishers: Amsterdam, pp 383–404.
- Hemachudha T (1994). Human rabies: clinical aspects, pathogenesis, and potential therapy. *Curr Top Microbiol Immunol* **187**: 121–143.
- Hemachudha T, Laothamatas J, Rupprecht CE (2002). Human rabies: a disease of complex neuropathogenetic mechanisms and diagnostic challenges. *Lancet Neurol* 1: 101–109.
- Hemachudha T, Panpanich T, Phanuphak P, Manatsathit S, Wilde H (1993). Immune activation in human rabies. *Trans R Soc Trop Med Hyg* **87:** 106–108.
- Hemachudha T, Phanuphak P, Sriwanthana B, Manutsathit S, Phanthumchinda K, Siriprasomsup W, Ukachoke C, Rasameechan S, Kaoroptham S (1988). Immunologic study of human encephalitic and paralytic rabies. Preliminary report of 16 patients. Am J Med 84: 673– 677.
- Hemachudha T, Phuapradit P (1997). Rabies. *Curr Opin Neurol* **10**: 260–267.
- Hemachudha T, Sunsaneewitayakul B, Mitrabhakdi E, Suankratay C, Laothamathas J, Wacharapluesadee S, Khawplod P, Wilde H (2003a). Paralytic complications following intravenous rabies immune globulin treatment in a patient with furious rabies. *Int J Infect Dis* 7: 76–77.
- Hemachudha T, Wacharapluesadee S, Laothamatas J, Wilde H (2006). Rabies. *Curr Neurol Neurosci Rep* **6**: 460–468.

with standard video imaging equipment and the images were analyzed with an image analysis software package with an integrated density program (Multi-analyst TM /PC version 1.1. BioRad, USA). The software graphically represented the bands of DNA present in each lane of the gel, calculating the value of the corresponding area. The cytokine expression rates were calculated as a ratio of cytokine to GAPDH area from the same sample (Chamizo et al, 2005). A ratio of >1 was considered significant.

- Hemachudha T, Wacharapluesadee S, Lumlertdaecha B, Orciari LA, Rupprecht CE, La-Ongpant M, Juntrakul S, Denduangboripant J (2003b). Sequence analysis of rabies virus in humans exhibiting encephalitic or paralytic rabies. J Infect Dis **188**: 960–966.
- Hemachudha T, Wacharapluesadee S, Mitrabhakdi E, Wilde H, Morimoto K, Lewis RA (2005). Pathophysiology of human paralytic rabies. J NeuroVirol 11: 93–100.
- Juntrakul S, Ruangvejvorachai P, Shuangshoti S, Wacharapluesadee S, Hemachudha T (2005). Mechanisms of escape phenomenon of spinal cord and brainstem in human rabies. *BMC Infect Dis* **5**: 104.
- Kalita J, Misra UK, Pandey S, Dhole TN (2003). A comparison of clinical and radiological findings in adults and children with Japanese encephalitis. Arch Neurol 60: 1760–1764.
- Khawplod P, Shoji Y, Ubol S, Mitmoonpitak C, Wilde H, Nishizono A, Kurane I, Morimoto K (2006). Genetic analysis of dog rabies viruses circulating in Bangkok. *Infect Genet Evol* **6**: 235–240.
- Lafon M (2004). Subversive neuroinvasive strategy of rabies virus. Arch Virol Suppl: 149–159.
- Laothamatas J, Hemachudha T, Mitrabhakdi E, Wannakrairot P, Tulayadaechanont S (2003). MR imaging in human rabies. *AJNR Am J Neuroradiol* 24: 1102–1109.
- Lumlertdacha B, Boongird K, Wanghongsa S, Wacharapluesadee S, Chanhome L, Khawplod P, Hemachudha T, Kuzmin I, Rupprecht CE (2005). Survey for bat lyssaviruses, Thailand. *Emerg Infect Dis* **11**: 232–236.
- Lumlertdacha B, Wacharapluesadee S, Denduangboripant J, Ruankaew N, Hoonsuwan W, Puanghat A, Sakarasaeranee P, Briggs D, Hemachudha T (2006). Complex genetic structure of the rabies virus in Bangkok and its surrounding provinces, Thailand: implications for canine rabies control. *Trans R Soc Trop Med Hyg* **100**: 276–281.
- Marquette C, Ceccaldi PE, Ban E, Weber P, Tsiang H, Haour F (1996a). Alteration of interleukin-1 alpha production and interleukin-1 alpha binding sites in mouse brain during rabies infection. *Arch Virol* **141**: 573–585.
- Marquette C, Van Dam AM, Ceccaldi PE, Weber P, Haour F, Tsiang H (1996b). Induction of immunoreactive interleukin-1 beta and tumor necrosis factor-alpha in the brains of rabies virus infected rats. *J Neuroimmunol* **68**: 45–51.
- Mitrabhakdi E, Shuangshoti S, Wannakrairot P, Lewis RA, Susuki K, Laothamatas J, Hemachudha T (2005). Difference in neuropathogenetic mechanisms in human furious and paralytic rabies. *J Neurol Sci* **238**: 3–10.

- Pleasure SJ, Fischbein NJ (2000). Correlation of clinical and neuroimaging findings in a case of rabies encephalitis. *Arch Neurol* **57:** 1765–1769.
- Roy A, Phares TW, Koprowski H, Hooper DC (2007). Failure to open the blood-brain barrier and deliver immune effectors to central nervous system tissues leads to the lethal outcome of silver-haired bat rabies virus infection. *J Virol* **81:** 1110–1118.
- Sheikh KA, Ramos-Alvarez M, Jackson AC, Li CY, Asbury AK, Griffin JW (2005). Overlap of pathology in paralytic rabies and axonal Guillain-Barre syndrome. *Ann Neurol* 57: 768–772.
- Tepsumethanon V, Wilde H, Meslin FX (2005). Six criteria for rabies diagnosis in living dogs. *J Med Assoc Thai* 88: 419–422.
- Tirawatnpong S, Hemachudha T, Manutsathit S, Shuangshoti S, Phanthumchinda K, Phanuphak P (1989). Regional distribution of rabies viral antigen in central nervous system of human encephalitic and paralytic rabies. *J Neurol Sci* 92: 91– 99.
- Wacharapluesadee S, Hemachudha T (2001). Nucleic-acid sequence based amplification in the rapid diagnosis of rabies. *Lancet* **358**: 892– 893.
- Wang ZW, Sarmento L, Wang Y, Li XQ, Dhingra V, Tseggai T, Jiang B, Fu ZF (2005). Attenuated rabies virus activates, while pathogenic rabies virus evades, the host innate immune responses in the central nervous system. *J Virol* **79**: 12554–12565.